
 

 
SANDIA REPORT 
 

SAND2005-6917 
Unlimited Release 
Printed November, 2005 
 
 
Understanding the Effects of 
Microarachtectural parameters on the 
Uniprocessor Performance of Sandia 
Scientific Applications 

DANA HARDIN 
 

 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 
 



 

 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government, nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov 
Online ordering:  http://www.osti.gov/bridge  
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov 
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 
 

 
 
 
 
2 



 i 

UNDERSTANDING THE EFFECTS OF MICROARCHITECTURAL PARAMETERS 

ON THE UNIPROCESSOR PERFORMANCE OF  

SANDIA SCIENTIFIC APPLICATIONS 

BY 

DANA HARDIN, B.S. 

 

 

 

A thesis submitted to the Graduate School  

in partial fulfillment of the requirements 

for the degree 

 

Master of Science in Electrical Engineering 

 

 

 

 

 

 

 

New Mexico State University 

 

Las Cruces, New Mexico 

 

June 2005 

 

 

 

 

 

 

 

 

 

 

 



 ii 

“Understanding the Effects of Microarchitectural Parameters of the Uniprocessor 

Performance of Sandia Scientific Applications,” a thesis prepared by Dana Janae Hardin 

in partial fulfillment of the requirements for the degree, Master of Science in Electrical 

Engineering, has been approved and accepted by the following: 

 

 

Linda Lacey 

Dean of the Graduate School 

 

 

 

 

Jeanine Cook 

Chair of the Examining Committee 

 

 

 

 

Date 

 

 

Committee in charge: 

 

 Dr. Jeanine Cook, Chair 

 

 Dr. Steve Stochaj 

  

 Dr. Erik DeBenedictis 

 

 

 

 

 

 

 

 

 

 



 iii 

VITA 

 

 

March 27, 1980   Born at Hobbs, New Mexico 

 

1998     Graduated from Lovington High School, 

     Lovington, New Mexico 

 

1998-2000 Associate of Science, New Mexico Junior College 

Hobbs, New Mexico 

 

2000-2003 Bachelor of Science, Electrical Engineering 

New Mexico State University  

Las Cruces, New Mexico 

 

2003-2005 Graduate Assistant 

College of Engineering 

New Mexico State University 

 

 

 

Field of Study 

 

 

Major Field: Electrical Engineering (Computer Engineering) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

ABSTRACT 

 

UNDERSTANDING THE EFFECTS OF MICROARCHITECTURAL PARAMETERS 

ON THE UNIPROCESSOR PERFORMANCE OF  

SANDIA SCIENTIFIC APPLICATIONS 

 

 

 

 

Master of Science in Electrical Engineering 

 

New Mexico State University 

 

Las Cruces, New Mexico, 2005 

 

Dr. Jeanine Cook, Chair 

 

 

 

 

 

Designing the best performing microprocessor for a class of applications involves 

researching the impact of each major design decision and exploring innovative methods 

to best solve the application specific challenges.  The class of large scientific applications 

executed at Sandia National Laboratories present unique characteristics and challenges 

for microprocessor performance optimization.  This thesis investigates bottlenecks 

limiting the performance of SNL’s large scientific applications and proposes 

configurations and techniques to improve performance.  Initially, the cache hierarchy was 

proposed to a major bottleneck to the overall performance of these applications, however 

we present evidence, through simulation, that even perfect cache behavior (no cache 

stalls) does not greatly improve performance.  Moreover, simulations with a “super” 

microarchitecture, configured with nearly infinite resources, show only modest 
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performance gains.   Since other types of benchmarks achieve IPC rates of hundreds, 

even tens of thousands of instructions per cycle with this “super” configuration, the 

performance reduction from instruction-level dependency stalling was the next potential 

bottleneck explored.  Our simulation of the instruction-level dependency stalls in the 

SNL benchmark for the default Alpha configuration reveals that on average each 

instruction incurs more than 5.5 stall cycles waiting for the resolution of instruction-level 

dependencies.  Classifying each stall by instruction type indicates that most stalling 

occurs from floating-point and load instructions.  Possible techniques to reduce the 

stalling caused by these instructions are discussed.  Finally, we present the best 

performing finite cache configurations for the SNL benchmark and performance results 

from a bypass caching technique designed to exclude large matrices and vectors from the 

cache hierarchy in order to prevent cache pollution. 
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1   INTRODUCTION 

 

 

 

 Ideal computers would be designed to perform well on each and every type of 

program or application to be executed.  However, the truth in life and computer 

architecture is that everything is a trade-off.  Computers optimized for specific tasks may 

exhibit degraded performance for other workloads.  In some arenas, such as personal 

computing, performance needs to be good for various types of applications.  On the other 

hand, most scientific applications tend to execute mostly tight-looped, repetitive 

computations.  Optimizing computers for these tight-looped computations would improve 

performance for those executing several of these applications daily.     

 To efficiently solve large scientific problems, a group of microprocessors each 

optimized for scientific computing is needed.  The intent of this research is to understand 

the major performance constraints of scientific computing and to determine how to 

optimize the performance of these workloads at the uniprocessor level.  Understanding 

and improving uniprocessor performance is an integral step in developing a prescription 

for better overall performance of scientific applications executed on supercomputers.  

 

1.1 The Cube Benchmark 

 

 Benchmarks are programs specifically designed or chosen to measure and 

compare performance on different computers.  Uni-processor benchmarks are divided 

into two classes (integer, floating-point).  Integer benchmarks perform the majority of 

operations on 32-bit words, and similarly floating-point benchmarks concentrate on 

single-precision floating point decimal operations (also 32-bits). The non-profit 
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corporation SPEC, Standard Performance Evaluation, was established to approve and 

maintain a standardized set of relevant benchmarks that can be applied to the newest 

generation of high-performance computers [1].  SPEC has created a suite of floating point 

benchmarks that serve as a standard representative of the key characteristics of scientific 

workloads.  Likewise, Sandia National Laboratories (SNL) also has developed a 

scientific benchmark, initially created to verify linear solver libraries and the Finite 

Element Interface (FEI).  FEI is a platform allowing applications to interface with 

multiple solvers needed in different types of scientific computations.   

 According to SPEC standards, a potential benchmark must meet the following 

specified criteria to be included in their suite of benchmarks.  First, the benchmarks must 

be commonly used and utilize a significant portion of the hardware resources.  They must 

solve important and relevant technical problems and produce valid results to be published 

in a respectable publication.  Finally, they require benchmarks to be maintainable and 

pertinent to computer designers and vendors [1].   

 The cube test benchmark developed by SNL employs the Trilinos library of 

solvers to perform finite element analysis (FEA).  FEA is a common technique for 

modeling complex structures and calculating the response of the model/structure to 

different conditions by solving a set of simultaneous equations.  The cube test method 

starts with the creation of a cube model (8-node hexahedral) with the user specified 

dimensions and degrees of freedom.  The number of degrees of freedom represents the 

number of statistics (i.e. physical properties like temperature, distance, etc) collected at 

each node of the cube mesh and is responsible for the density of the mesh.   

In the next step, the cube is divided into smaller elements connected at specified 

node points and is arranged into either a Compressed Row Storage (CRS) or Variable 
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Block Row (VBR) format depending on user preference.  The CRS format arranges the 

nonzero elements of a matrix in an array of values that is contiguous in memory.  The 

array is paired with two descriptive vectors; one that provides the column number of each 

nonzero element and another vector that stores the locations in value array that represent 

the first in each row [2].  An example of a matrix arranged in CRS format is shown in 

Figure 1.1 below:  

 

          Matrix A 

    Values = [A B C D E F G H] 
 
 Column Index = [1 3 1 2 3 5 3 4] 
 
 Row Pointers = [1 3 7 8 9] 
 
 

          
Figure 1.1:  Example matrix A displayed in CRS format 

 

CRS reduces the necessary memory storage locations from one location for each element 

of the cube (width * height * depth) to 2 times the number of nonzeros elements added to 

the width plus 1 (2 * nnz + W +1).  In the example above, the memory locations would 

reduced from 25 to 22 with the CRS formatting.  The benefits of CRS formatting are 

contiguous nonzero elements and less memory space, and the only drawback is the 

introduction of indirect memory accessing to the array. 

 VBR provides an efficient way to arrange sparse matrices according to clusters or 

blocks of nonzero data.  The VBR format organizes matrices or cube meshes into six 

arrays including: 

Row pointer array (rptr) - pointing to the first row number of each block row 

 1 2 3 4 5 
1 A 0 B 0 0 
2 C D E 0 F 
3 0 0 0 0 0 
4 0 0 G 0 0 
5 0 0 0 J 0 
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Column pointer array (cptr) - pointing to the first column number of each block column 

Value array (val) - containing the entries of the matrix 

Index array (indx) - pointing to the beginning of each block entry stored in val 

Block index array (bindx) – pointing to the block column indices of the nonzero blocks 

Block pointer array (bptr) – pointing to the beginning of each block row in bindx and val 

                     Matrix B 

rptr = [ 1 3 4 6] 

cprt = [1 4 6 7 9] 

val = [a b c d e f i j g h k l m n o p q] 

indx = [1 7 9 11 12 14 18] 

bindx = [1 3 2 3 3 4] 

bptr = [1 3 5 7] 

 

VBR Matrix B 

 1 2 3 4 

1 B1  B2  

2  B3 B4  

3   B5 B6 

Figure 1.2:  Example Matrix B displayed in VBR format 

 

The VBR format, although used less frequently than CRS, helps the sparse matrix solvers 

to perform the kernel matrix operations more efficiently on the block entries [3]. 

Preconditioning is a technique by which the cube (system of equations) is 

transformed into an equivalent representation that converges more rapidly than the 

 1 2 3 4 5 6 7 8 

1 A C E   I   

2 B D F   J   

3    G H K   

4      L N P 

5      M O Q 
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original mesh.  After preconditioning the “cube” with SNL’s main multigrid (ML) 

preconditioning package, the large system of linear equations is solved [4].  Sandia’s 

Aztec00 solver library provides several Krylov iterative solvers.  Krylov iterative solving 

techniques work to minimize the residual (or error) with each iterative approximation to 

rapidly converge on a solution.   

 The “cube” test problem has been evaluated and meets the specified requirements 

of a benchmark according to SPEC standards.  FEA is an important technique in 

modeling and solving large-scale scientific problems of large dimensions and degrees of 

freedom for Sandia National Labs and other scientific organizations.  A benefit of the 

“cube” test problem is that it can be sized according to the amount of resources available, 

allowing the user to determine how rigorously it taxes the architecture.  FEA is a 

commonly employed technique for solving and modeling various types of structures and 

environments such as thermal analysis, heat transfer, frequency analysis, fluid flow, 

motion simulation, and electromagnetic interactions.  Because of the frequent use and the 

importance of FEA, the results of the “cube” test program as well as the functionality of 

all the preconditioners and solvers have been carefully validated and documented.  

Finally, a technique to optimize the performance of the “cube” test problem and the 

scientific workloads that it represents will be useful to organizations like Sandia that run 

large numbers of these applications on a daily basis.  

 

1.2   Performance Evaluation Strategies 

 

 The performance of particular benchmarks on microprocessors can be evaluated 

through one or a combination of three primary methods – analytical modeling, 
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measurement, and simulation [5].  It is important to realize that each performance 

analysis method possesses its own strengths and shortcomings.  Therefore, there is no one 

preferred evaluating technique; the choice is made based on the resources and time 

available and the accuracy needed. 

 

1.2.1    Analytical Modeling 

 

 Analytical models replicate microprocessor and cache architectures in order to 

predict performance.  These models accomplish this modeling through mathematical 

equations that describe hardware behavior.  Analytical models aim to describe the 

hardware behavior using a mathematical equation.  Describing such a complex system 

mathematically is not an easy task.  While analytical modeling surpasses the other 

methods in simplicity of implementation and time of execution, these models have a hard 

time matching the accuracy of simulators or real measurements.  Analytical models are 

fast and useful for reducing the design space to the best configuration of major structures 

within a processor, but are typically not very accurate at predicting overall performance. 

 

1.2.2 Direct Measurement 

 

 

 Measurement methods are most commonly used to evaluate and compare the 

performance of different architectures and systems.  Since the performance 

measurements are obtained from real, already manufactured machines, this technique is 

used to compare different architectures against each other.  Many would argue that the 

results from measurement techniques are more accurate than other approximating 

techniques (simulation and modeling).  However, variations in runtime factors such as 
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scheduling and workload requirements create difficultly in recreating the same 

experimental environment on different systems at different times in order to achieve an 

accurate comparison [6].   

 Direct measurement methods are useful for determining how architectures and 

caches actually perform with real workloads, but are limited to working systems and the 

performance monitoring capabilities of those systems.  Direct measurement results are 

also limited by the number of performance counters available for a particular 

architecture.  The performance counters on modern processors are able to track 

performance metrics program execution.  Most modern architectures provide between 2 

and 8 performance counters while some, like the Power4 architecture, provide up to 18 

counters.  The complexity of modern computer architectures forces designers to move 

beyond measurement to predict and test performance before the designs are fabricated. 

     

1.2.3 Simulation 

 

 

 Simulators are software models of computer systems that provide a reconfigurable 

architecture and are used to predict the performance of microprocessors.  Because 

simulators are only models that attempt to replicate the behavior of real hardware, the 

accuracy of simulation analysis depends on the ability of the model to mimic the 

functioning of the desired configuration. Simulation results must always be considered a 

non-perfect representation of the true performance.  Nonetheless, modern simulators are 

meticulously validated against real hardware and remain an essential part of the process 

to understand and improve the performance of microprocessors. 

 The two main types of architectural simulators are trace-driven and execution-

driven simulators.  Trace-driven simulators execute a list of events or instructions that are 
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either collected from the execution of a workload on a native system or are a generated 

synthetic list called traces.  Trace-driven simulators gain some efficiency from executing 

a list of instructions already decoded and ordered, but the simulators still take substantial 

time when executing lengthy traces generated by real applications.  Research is being 

done on the reduction and sampling of traces to improve the effectiveness of trace-driven 

simulations, but the greatest drawback to trace-driven simulation remains the inability of 

a trace to capture any speculatively executed instructions [7, 8].     

 Execution-driven simulators model actual processor functionality, and are 

therefore the most accurate of microprocessor simulators.  However, because modern 

processors are superscalar, speculative, and execute out-of-order, these simulators are 

increasingly complex and take an excessively large amount of execution time.  Cycle-

accurate (or timing class) describes a branch of execution-driven simulators that execute 

real programs or benchmarks and collect performance data at every processor clock 

cycle.  Often, detailed cycle-accurate behavior is necessary for exploring design decisions 

or for understanding why programs perform better or worse during certain portions of 

their execution [9].   

 

1.3 SimpleScalar Simulators 

 

 Developing and validating an execution-driven micro-architecture simulator is 

difficult and time-consuming.  Few of these complex simulators are available to the 

research community; most academic researchers rely on a suite of simulators called 

SimpleScalar [9], which is freely available for non-profit research.  The SimpleScalar 

suite was collaboratively developed by SimpleScalar LCC, the University of Michigan, 
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and the University of Texas with funding from the National Science Foundation and the 

Defense Advanced Research Projects Agency.  SimpleScalar tools are widely used and 

respected in the research community.  One third of all top computer architecture 

conference papers published in 2002 used SimpleScalar simulators [9]. 

 The suite of SimpleScalar simulators includes several types of processor 

simulators of varying granularity and accuracy.  Only two of the processor simulators 

provided by SimpleScalar (sim-outorder and sim-alpha) implement detailed, cycle-

accurate modeling of out-of-order, speculative execution performed by the popular 

superscalar (multiple issue) processors.  These simulators, though time costly, produce 

the cycle-by-cycle modeling necessary to understand the performance characteristics of 

Sandia’s “cube” benchmark.    

 Sim-alpha is a validated model of the ALPHA 21264 processor with a simulation 

net error of 15% across 22 SPECCPU 2000 benchmarks.  Figure 1.3 and Table 1.1 on the 

next page shows features of the ALPHA 21264 architecture implemented and 

configurable in sim-alpha [10].  Sim-alpha provides the benefit of modeling the dynamics 

of a manufactured microprocessor at a detailed, cycle-accurate level.    
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Figure 1.3: Block diagram of ALPHA 21264 architecture [10] 

 

 

 

Feature Default Configuration 

Issue Width 4 instructions  

Issue Queues 20-entry integer, 15-entry floating point 

Reorder Buffer 80-entry buffer for tracking in flight instructions 

Memory Management  

Unit 

128-entry, fully associative data translation buffer 

128-entry, fully associative instruction translation buffer 

Functional Units 4 integer units that operate on specific class of instructions 

2 pipelined floating point units, one for multiplication 

Register File 80-entry integer, 31 architectural regs, 41 renaming, 8 PAL 

72 floating regs, 31 architectural, 41 renaming 

Instruction Cache (L1) 64KB, virtually addressed, 2-way set associative with set 

predictor  

Data Cache (L1) 64KB virtually addressed, physically tagged dual-read-

ported 

L2 Cache 2MB virtually addressed, physically tagged, direct mapped 

Branch Predictor 1024, 2-level local predictor 

4096-entry global predictor with 2-bit saturating counters 

4096-entry choice predictor choosing between above 

Victim Buffer 8-entry victim data buffer 

Load Queue 32-entry load queue 

Store Queue 32-entry store queue 

Address File 8-entry miss address file 

Table 1.1: Features of ALPHA 21264 for configuration in sim-alpha 
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The sim-alpha configuration contains several types of caches and buffers.  Figure 

1.4 below shows the mapping of a main memory block into different types of cache 

configurations.  Fully associative caches (a) and buffers allow any memory block to be 

placed in any cache location.  In direct mapped caches (b), each memory block can be 

mapped to only one location in the cache (found by the memory block address MOD the 

number of cache blocks).  Set-associative caches (c) contain sets to which memory blocks 

are mapped (found by the memory block address MOD the number of cache sets).  Figure 

1.3 shows how the Memory Block 12 maps into three types of cache configurations.  The 

highlighted blocks represent locations to which the Memory Block 12 may be mapped.  

Memory Block 12 may be placed into any location of the fully associative cache.  

However, Memory Block 12 may only be placed into Block 4 of the direct mapped cache 

and only Block 0 or 1 (Set 0) of the 2-way Set-associative cache. 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                                          

Main Memory 

 

Types of Caches 

0    0    0   

1    1    1   

2    2    2   

3    3    3   

4    4    4   

5    5    5   

6    6    6   

7    7    7   

(a) Fully Associative  (b) Direct mapped  (c) 2-way Set-associative 

 

Figure 1.4: Mapping of blocks from main memory to different cache configurations 
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 The remainder of this thesis is organized as follows:  Chapter 2 examines other 

methods of optimizing the performance of workloads.  Chapter 3 describes the approach 

to identifying the major performance constraints of the “cube” test problems and results 

of corresponding optimizations.  Chapter 4 presents the technique and results of smart 

caching.  Lastly, Chapter 5 summarizes the results and conclusions of this thesis. 
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2    RELATED WORK 

 

As the complexity of microprocessor design increases, the processes of analyzing 

performance and pinpointing bottlenecks have evolved from just following logical 

hunches to detailed performance investigations.  Performance evaluation techniques often 

differ from company to company and within the academic community as well.  A 

standard, systematic approach to analyze and compare the performance of processor 

designs would be useful, but the vast difference existing between the various designs and 

implementations of microprocessors makes the task of developing such an approach a 

daunting one.  Therefore, performance analysis and bottleneck identification have 

become an art form of choosing and combining reputable techniques and procedures that 

will result in accurate and informative results.  The following chapter describes several 

approaches to workload performance analysis and presents techniques for improving the 

performance of microprocessors. 

 

2.1   Performance Analysis 

 

According to literature from PAID (Performance Analysis and Its Impact of 

Design) workshops held at the International Symposium on Computer Architecture, there 

are common elements of performance analysis that transcend genre.  The workshops 

provide a platform to share advances in performance studies and establish some key 

methods to accurately analyze microprocessors.  References from the PAID workshops 

identified CPI (cycles per instruction), path length (dynamic instruction count) and 

execution time as the primary components in determining the net execution cost (T) of a 
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particular program [11].  The net execution cost (T) is often used to measure architectural 

performance because it includes effects from the architectural organization (measured in 

CPI), the instruction set architecture (ISA) and compilation (effect seen in path length), 

and the clock speed (inverse of seconds per cycle).   

T = (path length) x CPI x (seconds per cycle) 

 Another concept arising from the PAID workshops, called separable components, 

describes the processes of separating components such as CPI into more expressive 

components.  Separating CPI into two quantities that add up to the total CPI, such as 

infinite-cache CPI and FCE (finite-cache effects), helps to quantify the effect on CPI of 

the finite cache size decision [11].  This separation technique isolates and clearly 

demonstrates the impact of design choices on performance.  The workshops also 

emphasize the importance of determining upper bounds on performance calculated with 

infinite queues, resources, and bandwidths.  In addition to upper bounds, resource limit 

tests identify performance limits imposed by the actual finite resource sizes. These tests 

are performed by modeling or simulating all infinite resources except the test resource 

(actual size).  By isolating components and resources, performance characteristic and 

bottlenecks become easier to identify. 

 The Scientific Computing Group at Los Alamos National Laboratory (LANL) 

characterizes workloads at the instruction level to demonstrate how aspects of micro-

architectures will affect the performance [12].  These calculated parameters of the 

workload are used to estimate performance bottlenecks.  On-chip performance counters, 

as compared to detailed simulations, provide a relatively fast and accurate method of 

measuring the instruction-level characteristics.  The five instruction-level parameters (# 

of fp instructions, int instructions, memory instructions, L1 cache misses, and L2 cache 
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misses) are measured in terms of λ, a ratio of the total number of completed instructions 

to a subset of completed instructions (like completed floating point instructions, etc).  In 

the first level of analysis, the L1 cache is assumed to be infinite and the growth rate, G, of 

queues (number of entries – number of exits) is tracked in terms of the average issue rates 

described above (λx), the ideal instruction issue rate of the microprocessor (β), and the 

hardware-defined dispatch rate from that queue (∆x). 

Gx =   β  -  ∆x 

  λx 

 

Positive growth rates indicate bottlenecks arising without cache constraints, branching 

effects, or data dependencies and in this approach are considered to comprise the lower 

bounds for CPI (upper bounds for IPC).  Multiple positive growth rates limit the number 

of in-flight instructions possible in the given architecture.   

 The second and third levels of this characterization and bottleneck detection 

technique both include cache limitations in the equation.  The second level calculates the 

parameter Q, the maximum number of outstanding cache misses for a particular workload 

and architecture.   

Q = (outstanding memory instructions) * λm (completed inst. / completed memory inst.) 

λL1 (complete inst. / # L1 cache misses) 

 

The parameter Q indicates the value of extending the number of outstanding cache misses 

supported by the architecture.  Finally, the third step observes the change in λ with 

increased cache size.  Increasing the cache size should increase λ until the point at which 

a larger cache will not improve performance. 

 The instruction-level characterization method described above offers a quick and 

concise approach to identifying performance bottlenecks using performance counters and 

key parameters.  The equations derived from these parameters clearly quantify and 
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highlight hardware constraints of the microprocessor.  The method also provides a rough 

estimate for the best performing on-chip cache size. And, while the overall results of this 

approach are validated with results from empirical and statistical models, [12] noted that 

to improve the accuracy and usefulness of this method, the effects of branching and data 

dependency must be considered.   

Real world applications and benchmarks are useful tools for performance studies 

especially for comparing the overall performance of different architectures.  However, 

the complexity of these unique workloads makes it hard to pinpoint the cause(s) of 

performance bottlenecks.  This difficulty prompted the creation of an adaptable synthetic 

benchmark specifically designed to help researchers and developers identify and quantify 

bottlenecks of specific architectures.   

Synthetic benchmarks are artificial programs that are statistically representative of 

real world applications, but provide the added versatility of user-defined parameters for 

controlling the benchmark’s behavior.  For example, the adaptable synthetic benchmark, 

sqmat, represents the behavior of matrix multiplication and linear solvers with four user-

defined parameters for isolating microprocessor bottlenecks [13].  The four variable 

parameters include the working-set size (N), the computational intensity (M), the level of 

indirection or noncontiguous memory access (I) and the irregularity of memory access 

(S).  The sqmat benchmark operates on a number of matrices each of size NxN.  The 

number of matrices, L, is chosen to create an array big enough to exceed the size of the 

cache.  The elements of the matrices are placed in memory according to the user-defined 

irregularity (S).  Each matrix is accessed on the order of M
2
 times with some degree of 

irregularity (I).      
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Varying the values of the parameters allows the user to better represent different 

types of workloads.  High computation intensity (M) characterizes workloads solving 

dense matrices, whereas lower computational intensity and a reduced working-set (N) 

better represent dense matrix-vector or vector-vector operations.  High indirection (I) and 

irregularity (S) are found in workloads using Finite Element solvers for dense matrices. 

   This synthetic benchmark was used to compare the performance of scientific 

workloads on four modern microprocessors - Itanium2, Opteron, Power3, and Power4.  

In this case, performance is measured in terms of the algorithmic peak performance (AP) 

based on the effective maximum FLOP (floating point operation per second) rate for each 

microprocessor.  For workloads containing high computational intensity, defined as the 

ratio of floating point operations to load/store operations, Power3 and Itanium2 perform 

the best.  However, the performance of Itanium2 decreases significantly with decreased 

computational intensity indicating a bottleneck between the registers and cache for 

floating point operations, perhaps caused by Itanium2’s L1 cache which excludes floating 

point data.   

Large working-set sizes test the effects of working with a data set that exceeds the 

register set.  The results of this test indicate that Power3 handles register spills more 

efficiently.  The test of indirection, chosen to mimic the compressed row format (CRS) of 

sparse matrices, checks for bottlenecks in memory bandwidth and instruction fetching.  

Indirection is introduced by compressed formatting method because a single access to 

matrix data requires gathering information from three compressed arrays (in CRS format) 

stored in three different memory locations instead of one access to the original, 

consolidated matrix.  The Opteron, Power3 and Power4 each adequately handle the 

introduced indirection. The Itanium2, however, suffers a slowdown in performance of 
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between 1.5 to 5.4 times due to the introduced indirection, a slowdown unexplained by 

[11].  The final test of irregular memory access patterns examines the effect of cache 

misses on the architecture.  Itanium2 handles cache misses effectively surpassing the 

Opteron in a close second. 

Detailed results of this performance study are presented in [13], however the 

above results demonstrate the effectiveness of using synthetic benchmarks to isolate and 

identify the source of performance degradation.  Synthetic benchmarks characterize only 

a narrow spectrum of workload behaviors as compared to real applications or 

benchmarks.  Therefore, the results of the sqmat benchmark performance studies are 

useful for bottleneck detection, but are best used in conjunction with other forms of 

performance analysis.    

 

2.2   Performance Improvement Techniques 

 

 Commonly explored formulas for improving performance of high-volume 

scientific workloads consist of increasing resources such as functional units (arithmetic 

logic units), registers and especially the cache.  Intel’s Itanium processor was developed 

using the above approach to better manage high-volume scientific workloads [14,15,16, 

17].  However, the vast quantity of data and operations performed by these workloads 

often overwhelms on-chip caches, even large caches, preventing optimal performance.  

Techniques to help reduce memory-access latencies by reducing cache pollution and 

unnecessary accesses include selective fill [18], load redundancy [19], and split and 

victim caches [20,21] explained in detail in the following sections.  Also, in 2002, Cray 

released a shared-memory multi-vector processor (X1) that implemented a technique 
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called scalar caching [22]. This remainder of this chapter will examine and report the 

performance improvements of the techniques and implementations. 

 

2.2.1 Itanium2 Processor 

 

 The Itanium processor was developed by Intel to better meet the computing needs 

of the high-performance technical computing and large enterprise communities.  The 

design concept by Intel for the Itanium supplied a generous amount of resources along 

with powerful compilers optimized for parallel execution.  This approach termed EPIC 

(Explicitly Parallel Instruction Computing) was created to exploit and extract the inherent 

parallelism that exist in most scientific, looping workloads.  Unlike most processors 

categorized as either CISC (Complex Instruction Set Computers) or RISC (Reduced 

Instruction Set Computers), Itanium 2 decodes words (or long instruction strings each 

containing several instructions) making it the first general use processor in the realm of 

VLIW (Very Long Instruction Word) processors. Scalability, ability to maintain 

performance in a multi-processor environment, is another feature necessary for scientific 

supercomputing.  Itanium was developed to perform as the key component of large scale, 

supercomputing systems.   

 In 2004, Intel joined with manufacturer California Digital and the University of 

California at Lawrence Livermore National Laboratory (LLNL) to build a supercomputer 

composed of 4,000 Itanium2 processors [14].  Hal Graboske, Deputy Director of Science 

and Technology of LLNL says of the project: 

 “Thunder (the above mention supercomputer project) will serve a critical role 

 supporting the Lab’s mission to drive unclassified science and technology for 
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 multiple program areas.  Intel Itanium 2 processors address capacity and 

 capability issues facing national security and science programs, with a long-term 

 goal to develop a viable path to petaFLOP’s-scale computing. [14]” 

Organizations like NASA and companies including Wells Fargo Bank have also chosen 

the Itanium2 to fulfill their diverse computing needs.      

 The extensive resource enhancements implemented on the Itanium processor 

include three-levels of generous on-chip cache, an enlarged register file, more functional 

units and among others a bus system developed for efficient multiple processor 

communications.  The three (physically indexed and tagged, non-blocking) caches 

include split level one data and instruction caches each 16KB, 4-way set-associative, and  

double ported with 64-byte lines.  The L1 instruction cache is fully pipelined supplying 

six instructions per cycle.  The L1 data cache supports two simultaneous loads and stores 

and also does not cache floating-point data, only integer.  The 256KB, 8-way set-

associative L2 cache is unified and stores instructions and all types of data memory.  

Finally, the on-chip L3 cache is customer specified with sizes ranging from 1.5 to 9MB.  

The single ported L3 cache is 12-way set-associative, fully pipelined and has a maximum 

transfer rate of 32GB per cycle [15].   

 Other significant expansions include the register file which has 128 registers, 64-

bit general registers for integer storage, 128 floating-point registers each 82-bits wide, 64 

one-bit predicate registers, and 8 branch registers also 64-bits.  The Itanium2 processor 

provides 21 execution units - 6 multimedia units, 6 integer units, 2 floating-point units, 3 

branch units, and 4 load/store units.  These robust structures exist to assist in the 64-bit, 1 

GHz processing of the six to eight parallel instructions/operations per cycle [15]. 
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Figure 2.1:  Itanium2 block diagram [16] 

 

 Performance studies on the Itanium2 processor with 3M of L3 cache show that an 

Altix system with 64 (Itanium2) processors compared against the same configuration of 

Hewlett Packard 750MHz PA-8700 processors and 1 GHz, UltraSPARC III Cu 

processors performs 3.94 and 1.95 times faster, respectively, on SPEC 2000 floating-

point benchmarks [17].  On the uniprocessor level, however, the Itanium 2 performs only 

0.57 times faster than the 1.15GHz Alpha 21364 and 0.23 times better than the 1.7 GHz 

IBM POWER4 processor also on SPECfp 2000 [18].  These statistics speak volumes 

about the scalability of the Itanium2 performance, but this processor built to perform on 

floating-point workloads does not exhibit the expected performance improvement on the 

uni-processor level.  This observation will be confirmed and discussed in later chapters. 

 



 22 

2.2.2 Selective Fill Data Cache 

 

 Many researchers believe that the key to overcoming the performance bottleneck 

observed in most scientific applications can be accomplished by improving the 

performance of the cache.  Even substantial on-chip caches, like in Intel’s Itanium2, can 

become polluted by the massive amounts of data processed in these workloads.  The idea 

of a selective fill cache operates on the notion that minimizing the cache pollution 

enables the cache to benefit from the expected temporal locality exhibited in scientific 

processing.  The Selective Fill Data Cache (SFDC) method dynamically filters data with 

low temporal locality and prevents it from caching [19].      

 The Selective Fill Data Cache is implemented in hardware by three modifications 

and additions.  First, the existing data cache is concatenated with an additional “used” bit 

per block, similar to a dirty bit.  The “used” bit for a particular block is cleared upon a 

new block entering that position in the cache and set if the block is accessed again while 

in the cache.   

 Next, an additional and separate direct-mapped cache with the same number of 

sets as the data cache functions as the Cache Fill Policy Table (CFPT).  The CFPT holds 

the tags of the recently evicted blocks that were not reused while in the cache.  

Furthermore, the table also utilizes a two bit saturating counter to count how many times 

a particular block is evicted without reuse for the purpose of profiling access patterns.  

Entries in the CFPT are replaced when a new block (not in the table) is evicted from the 

data cache.   All block tags residing in the CFPT are not allowed back into the cache [16].   

 Thirdly, a bypass buffer is added to hold blocks that must bypass the data cache.  

The small cache buffer, like a victim buffer, sits between the data cache and the next 
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level of memory (L2 cache) and is intended to hold bypassed blocks close at hand for a 

short time to reduce the risk of mispredicting blocks that should have been cached.  

Experimentation shows that buffers bigger than 1/16
th

 the size of the data cache exhibit 

diminishing returns.    

 The SimpleScalar 3.0 tool set is used to test the effectiveness of the Selective Fill 

Data Cache technique among 4 SPEC2000 integer benchmarks - 175.vpr, 181.mcf, 

197.parser, and 164.gzip.  Four configurations of L1 Data Cache (8K and 16K direct-

mapped, 8K and 16 2-way set-associative) are simulated with no modifications, using 

SFDC, and with a victim cache equivalent to the bypass buffer.  The SFDC method 

shows slight improvement over the other methods for the mcf benchmark, the benchmark 

that exhibited the highest miss rates.  The parser benchmark results display that the SFDC 

method actually degraded the performance of the 8K direct-mapped cache compared to 

the un-modified data cache.  Also, the simple victim cache produces lower miss rates 

than either the un-modified or the SFDC across the board for the parser, vpr, and gzip 

benchmarks [19].  The complete results for the SFDC are shown below in Figure1.  

While the concept of the Selective Fill Data Cache is interesting and promising, this 

result shows that simple alternatives are currently more advantageous and SFDC requires 

further investigation and improved implementation. 
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VPR Benchmark Results
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Figure 2.2:  VPR benchmark results of Selective Fill Data Cache method and victim 

cache miss rates [19] 

MCF Benchmark Results
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Figure 2.3:  MCF benchmark results of SFDC method and victim cache miss rates [19] 
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Parser Benchmark Results

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

8K-direct 8K-2way 16K-direct 16K-2way

Configuration

M
is

s
 R

a
te Base Config

SFDC

Victim

 
Figure 2.4:  Parser benchmark results of SFDC method and victim cache miss rates [19] 
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Figure 2.5:  GZIP benchmark results of SFDC method and victim cache miss rates [19] 
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2.2.3   Load Redundancy 

 

 

Another alternative for improving cache memory performance reduces the 

number of redundant loads.  Load instructions often take more time to execute than any 

other instruction because they must incur the access penalty of the cache, and the 

occasional memory latency, in order to complete.  While avoiding loads altogether is 

impossible and impractical, reducing redundant loads reduces execution time while 

preserving the correct functioning of the program.    

[20] defines load redundancy as the act of reloading a value into a register that 

already contains that same value.  The amount of load redundancy existing in a 

benchmark or program can be calculated by stepping through the executing program with 

the GNU debugger, counting redundant loads.  Of the SPEC95 benchmarks compiled 

with optimization, lisp and ijpeg exhibited the highest (22.81% of loads) and lowest 

redundancy (14.18%), respectively.   

A load within the malloc function produced the most redundancy in some 

benchmarks.  In this case, the redundancy that could be eliminated with smarter 

programming was not resolved by the compiler.  Many times redundancy arises from 

subroutines that contain complicated controls and are not easily optimized by compilers. 

The maximum performance achieved by eliminating all redundant loads and the 

expected performance increase by implementing a load redundancy predictor are 

calculated across four SPEC95 benchmarks.  By modifying SimpleScalar to detect and 

bypass redundant loads, the SPEC95 benchmarks demonstrate the expected performance 

increase within each program.  Each of the 4 SPEC95 benchmarks tested contained a load 

redundancy percentage between 14.19% (ipeg) and 22.81% (lisp).  The IPC of the 

modified and normal SimpleScalar execution of the benchmarks showed that bypassing 
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all redundant loads increased IPC from 2% to 10% across the benchmarks.  This metric 

serves as the upper bound for increasing performance with this method [20]. 

 A more realistic implementation of eliminating load redundancy is simulated by 

adding a load predictor (a modification of a branch predictor) that compares a decoded 

load instruction to the instruction addresses stored in a prediction table.  The prediction 

table holds recently executed load instructions.  Therefore, if the current load matches a 

load in the table, the load is bypassed.  Various table prediction sizes are tested, and those 

with over 128 sets (each with 2 entries) showed diminishing returns.  Results from this 

implementation show increased IPC from 1% to 8% when compared against normal 

simulation of the benchmarks [20].  These results may be slightly optimistic considering 

the simulated results charged no penalty to resolve missed predicted loads. 

 This method of improving performance is a simple hardware implementation that 

resolves load redundancies missed by gcc compiler optimizations.  While the actual 

performance gains are modest, the simplicity of this hardware method makes it attractive.  

For those working with highly redundant programs, this technique may actually be easier 

than modifying a compiler to prevent the redundancies.  In conclusion, the load 

redundancy results reveal that a slight performance increase can be achieved by reducing 

redundant loads, but it also proves that load redundancy is not the leading cause of the 

performance degradation in cache and memory latencies. 
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2.2.4 Split and Victim Caches 

 

Researches have strived to design cache memory able to exploit the natural access 

patterns that exist in most workloads.  Temporal locality describes the tendency of 

programs to re-reference a location in the cache that has recently been referenced.   

Spatial locality explains the high probability of accessing data nearby data just recently 

accessed.  Cache design choices like block size and associativity (number of blocks in 

set) each exploit different locality.  Larger blocks of data brought into the cache on a miss 

help caches take advantage of spatial locality by bringing in more nearby data on each 

access.  Caches with more blocks per set best serve temporally local programs by 

allowing more recently accessed data blocks to remain in each set.  However, because 

access tendencies change considerably between different programs and even in different 

phases of a single program, a single cache and configuration often never achieves optimal 

performance. 

 A common technique to improve cache performance and to better accommodate 

changing access patterns involves splitting the first level of data cache into two separate 

caches.  Each separate cache is configured to best manage the data stored in that cache.  

Several split cache types and schemes have been simulated to test the effectiveness of 

each arrangement [21].  The first example split cache configuration (DUAL) consists of 

two independent cache organizations.  One cache with bigger block size for spatially 

local data and another with one word blocks for temporally local data.  In the DUAL 

scheme, data is classified as either spatial, temporal, or neither at runtime using a 

hardware history table.  Spatial and temporal data are cached in their respective caches 

while data exhibiting neither is bypassed to the next level of memory.  The Split 
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Temporal Spatial Data Cache (STS) [21] method uses the same configuration as above, 

but classifies data during compilation and attaches counters to data to check locality and 

correct data mislabel during compilation.   

 Another approach to splitting the data caches comes from the trend that data 

arrays and structures tend to be more spatially local, whereas scalar data exhibits more 

temporal locality.  For this reason, the Scalar-Array Data Cache [21] caches array and 

scalar data separately.  In this case, the compiler classifies data signaling the controller to 

put the data into the corresponding cache.  Another method, the Cacheable Non-

Allocatable Model (CNA) [21], classifies data as cacheable or non-cacheable depending 

on a predication counter that holds the cache hit history of data access instructions.  

Instructions commonly causing cache misses will therefore not be cached again.  A 

modified CNA cache scheme, the Memory Address Table (MAT) [21], stores the reuse 

information of each kilobyte block in a direct-mapped hardware table used to determine 

whether or not data should be cached. 

 Finally, data cache memory can be divided into one large main cache and a 

smaller cache (called a Victim cache) acting as a buffer before data is stored to the next 

level of cache or main memory [21].  Similar to the Victim cache, a Filter cache is a 

small cache buffer that holds the most frequently referenced data blocks as indicated by a 

counter associated with each block.  The ABC (Allocation by Conflict) [21] victim 

caches check an extra conflict bit to decide whether to evict a block on a conflict miss.  

Every cache hit to a block resets the conflict bit, and recently hit blocks (conflict bit equal 

to zero) remain in the main cache on a miss while the blocks that cause the miss will be 

deposited into the small buffer cache.  



 30 

 To compare the relative performance of the cache enhancement techniques 

described above, one configuration from each approach is simulated with identical 

conditions and benchmarks.  A modification of the DUAL cache configuration, called the 

Nontemporal Streaming Cache (NTS) [21], dynamically routes data between the two split 

level one data caches.  NTS allocates one cache for data that is strictly temporal and 

another cache to hold data that exhibits both temporal and spatial locality tendencies.  

NTS was chosen to represent caches that separate data according to locality because it is 

widely used and documented.    In [21], the Victim cache scheme used for comparison 

consists of a large, direct-mapped main cache (16Kbytes) with a fully associative cache 

buffer (2-Kbytes).  Lastly, the MAT cache represents those configurations that cache 

scalar data in a separate cache from array or structure data.   

 When comparing each split cache configuration to an equivalent single cache, the 

Victim cache shows the greatest speedup for direct mapped caches among integer 

(speedup of 7.68 over single cache) and floating point (speedup of 3.67) SPEC 

benchmarks.  NTS performed best in four way set-associative caches with a speedup of 

10.29, while the Victim cache still demonstrated greater speedup (3.78) among the SPEC 

floating point benchmarks.  Although the MAT scheme showed improvement, especially 

with increased block sizes, it did not improve cache performance as much as the NTS or 

the Victim cache setup [21].   

 One study researched the effects of combining the techniques of the MAT cache, 

Victim cache, and stream buffer [22].  The stream buffer, in this case a 10 line, fully 

associative cache, serves as a place to store prefetched data brought in on a missed cache 

block.  This integrated solution implements a 4-Kbyte direct-mapped Scalar cache, a 4-

Kbyte direct-mapped cache, 8 line fully-associative Victim cache, and the stream buffer 
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mentioned above.  This configuration achieved a 55 % improvement over a single cache 

configuration of the same size executed on SPEC floating point benchmarks [21].     

 Moreover, the Cray X1 (a shared-memory multi-vector processor) is one example 

of a working system that implements the concept of a separate cache for scalar data.  The 

Cray X1 system has a strictly scalar, level one data cache of size 16 KB.  The 2 MB non-

scalar cache, called the E-cache, contains all the vector data references and also all the 

references that miss the scalar cache [23].  Performance studies demonstrate the Cray X1 

“achieved high raw performance relative to the Power (IBM) systems for the 

computationally intensive applications”, but other systems still completed with faster 

runtimes [24].  Though the X1’s performance is certainly attributed to many architectural 

components and design attributes, the results prove that split cache configurations are an 

achievable, workable solution to be explored. 
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3   Methodology for Performance Analysis 

 

 

 

3.1 Performance Analysis Tools and Metrics 

 

 

 The previous chapter describes several methods and formulas for measuring the 

performance of microprocessors and for identifying the bottlenecks limiting their 

performance.  Most of these methods look first at Cycles Per Instruction (or IPC) to 

gauge overall performance.  Calculating or simulating the maximum IPC provides an 

upper bound for comparison and identification of bottlenecks.  The theoretical upper 

bound of IPC comes from the maximum number of instructions the architecture can 

issue/commit per cycle.  However, the more commonly used measure of maximum IPC 

comes from the IPC calculated or simulated with no cache misses or access penalties 

(assuming infinite cache), no branching effects, and no data dependency stalls.  Beyond 

IPC, the utilization and performance metrics of major components and queues become 

important for specific bottleneck identification.   

   The “cube” test benchmark previously introduced serves as the primary 

benchmark for performance evaluation for this research.  This benchmark provides the 

opportunity to observe the performance of a fully functioning finite-element analysis tool 

without the hassle of providing actual input data.  The test problem solves a system of 

equations associated with a mesh of arbitrarily chosen data points.  Upon the 

recommendation of SNL, the mesh will always be organized according to the CRS format 

type and ML will be used to precondition each mesh before solving.  The size, shape and 

density of the mesh are user-defined parameters allowing the user to determine the 

physical dimensions of the cube mesh and in turn how intensely the benchmark taxes the 

architecture of the microprocessor.  Performance results from the “cube” benchmark are 
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compared to results from SPEC2000 benchmark fmad3, characterized by similar 

functioning.  The benchmark fma3d is a finite element method, written in Fortran, 

designed to simulate in the inelastic transient dynamic response of three-dimension 

objects subjected to suddenly applied loads [1].  Results from the fma3d benchmark will 

serve as a comparison for the results of the “cube” benchmark, reinforcing the 

performance results for FEA and scientific workloads.     

 Performance data is collected from the sim-alpha simulator, also described in a 

previous chapter, along with verification by means of another cycle-accurate 

SimpleScalar simulator, sim-outorder.  Another important method of verification includes 

comparing simulator results with similar performance metrics of current microprocessors.  

For this reason, the configuration file describing sim-alpha’s architecture is modified to 

best resemble the Itanium2 microprocessor, allowing performance data to be compared.  

Although the Itanium2 has a VLIW architecture, major structures in the architecture such 

as registers, caches, and queue sizes can be imitated for a general comparison of 

performance.  The architecture features of the Itanium2 and their representation in the 

sim-alpha configuration are shown in Table 3.1. 
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Itanium 
Configuration of 

sim-alpha Itanium 2 Architecture 

Architecture SuperScalar VLIW 

Processing Out-of-order In-order 

Fetch Width 6 6 

Commit Width 6 6 
Physical Integer 

Registers 128 128 
Physical Floating-

point Registers 128 128 

Functional Units 12 11 

Cache Configuration 2 Levels  3 Levels 

DL1 
256 KB 8-way set-

associative 
16 KB, 4-way set-associative 

(no floating point access) 

L2 
1.5 MB, 12-way 
set-associative 256 KB, 8-way set-associative 

L3 none 3 MB, 12-way set-associative 

Table 3.1: Itanium 2 configuration on sim-alpha versus standard Itanium 2 architecture 

 

The Itanium2 microprocessor was chosen for this comparison for a variety of 

reasons.  The Itanium2 was developed largely for the purpose of improving performance 

of scientific workloads much like the “cube” benchmark and others.  Also, the Itanium2 

architecture provides a generous number of performance counters allowing for the 

collection of several performance statistics simultaneously.  And, because cycle-accurate 

simulators, like sim-alpha, take several days, even weeks to complete a simulation, the 

Itanium2 provides a platform on which several problems sizes and configurations can be 

efficiently tested and analyzed (in real time).  Thus, the Itanium2 provides a better 

coverage of the “cube” benchmark analysis and is useful in identifying information about 

specific areas where more detailed information, from simulators, is necessary.  

Performance counters, if available, offer the quickest and perhaps the most accurate 

means of gathering initial performance information for a particular application or 

benchmark.  Simulators, conversely, contribute more detailed performance data with the 
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added capability of modifying architectural features to observe their effect on 

performance.  When used in conjunction, these two performance evaluation tools are 

powerful resources.   

The organization of this chapter is as follows:  Section 3.2 describes the process 

of choosing the most appropriate problem sizes for complete performance analysis and 

comparison.  Section 3.3 presents the performance and bottleneck analysis methodology 

and results.  Section 3.4 summarizes the results of this method, the conclusions arising 

from these results, and our plans for further research.    

 

3.2 Problem Size 

 

  The capability of simulating a great variety of problem sizes, shapes and densities 

provides for excellent performance coverage and mounds of performance data.  The only 

limitation to uni-processor problem size selection is processor memory.  The performance 

analysis of the “cube” benchmark is performed on a Beowulf cluster of eight machines.  

Each of the eight machines utilizes 2GHz, dual AMD processors with 2GB RAM.  To 

avoid over running the 2GB of RAM and thereby suspending operation of the “cube” 

benchmark, problems sizes which require over 1M resulting equations will be excluded.  

The three user-defined parameters that determine problem size include the width (W), 

depth (D), and the number of the degrees of freedom (DofPerNode).  The number of 

equations resulting from problem sizes with parameters mentioned above is found using 

the following equations [4]: 
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NNodes = the number of nodes in a mesh 

NEqns = the total number of equations for a particular problem size  

NNodes = (W+1) * (W+1) * (D+1)  

NEqns = NNodes * DofPerNode 

 

 

Figure 3.1: Visualization of 3 dimensional “cube” benchmark mesh from [4] 

 

 Each mesh created by the “cube” benchmark exists in three dimensions.  The 

width and depth are the only dimensions of the 3D object that can be specified by the 

user with the assumption that the height is always equal to the user-defined width.  The 

other user-defined parameter, DofPerNode, describes the number of parameters (in FEA, 

the number of physical properties or attributes) monitored at each node.  Increasing the 

number of degrees of freedom per node makes for a denser mesh, more equations and 

higher computational intensity.   

 

 

 



 37 

3.2.1 Problem size results for Alpha configuration 

 

While it is impossible to simulate every potential size, shape, and density of a 

mesh, gaining insight about the performance trends among different configurations is 

important.  Results from Itanium2, along with comparable simulations from sim-alpha 

(Alpha and Itanium2 configuration), are used to measure performance among different 

problem sizes.  To better understand the effects of varying W, D and DofPerNode on 

performance, the number of equations for a mesh is held constant.  Two problem sizes, 

each with a constant number of equations, are evaluated with for varying W, D, and Dof.  

The two problem sizes, equations equaling 175,616 and 274,625, are chosen to 

overwhelm (operate on a mesh with more nodes/values than can be stored in the cache) 

the DL1 cache and L2 cache respectively.  The following Figure 3.2 shows the results of 

varying the W, D, and DofPerNode on IPC as a measure of overall performance for the 

Alpha configuration. 
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Sim-alpha IPC for Problems With Equal Equations
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Figure 3.2: Sim-alpha performance (in term of highest IPC) for varying width and depth 

with equal equations  
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Figure 3.3:  Sim-alpha performance (in terms of highest IPC and lowest cache miss rates) 

varying width and depth with equal equations 
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Figure 3.4: IPC and # of instructions for equations = 175,616 
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Figure 3.5: Number of instructions and cycles executed by each problem size,  

equations = 175,616 

 

Figure 3.3 reveals the trends of overall performance and caches miss rates among 

different shapes of meshes with a constant number of equations.  Figure 3.2 displays the 

highest IPC achieved by the problems with the largest width and smallest depth.  The 

improvement in IPC produced by problems with larger widths than depths appears to be 

caused by a significant decrease in L2 cache miss rates.  Even though the decrease in the 

L2 miss rate is very drastic, the resulting increase in IPC is only 0.22 instructions per 

cycle.  Also, Figures 3.4 and 3.5 reveal that although the problem 295x1x1 achieves the 

highest IPC, it also requires the most instructions to complete.  Therefore, the problem 

1x43903x1 will actually execute more quickly than the other problems on this 

architecture.  Thus, the Figures demonstrate that the problems with larger depths 

complete faster and the problems with larger widths better utilize the architecture by 

completing more instructions per cycle.  
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The results of the problem size simulations indicate little change in IPC among 

problems with different dimensions.  In addition, the maximum difference in IPC among 

the two problem sizes (equations equal 175,616 and 274,625) is less than 0.034 

instructions per cycle as seen in Figure 3.2.  However, the number of cycles executed by 

different problem sizes and shapes does vary greatly.  Even so, our research is focused on 

improving the microarchitectural performance at the uniprocessor level, thus our 

concentration will be on improving IPC.  Because the two problem sizes exhibit such 

similar performance behavior in terms of IPC, the performance of these problems can be 

represented by one simulation of either of the problem sizes and any of the shapes 

simulated above.  Therefore, all subsequent simulations will be performed on the problem 

with equations equal to 175,616 and W=55, D=55, and Dof =1.  Validation for our choice 

of Dof=1 will be presented below in the Itanium2 results section.     
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3.2.2   Problem size results for the Itanium2 processor 

Performance of Itanium2-type Configuration of Sim-alpha
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Figure 3.6:  IPC and cache miss rates for Itanium2-type configuration of sim-alpha 
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Problem Width Depth Dof 

0 1 300 1 
1 5 173 1 
2 10 128 1 
3 50 59 1 
4 75 48 1 
5 100 41 1 
6 150 31 1 
7 300 24 1 

 

Figure 3.7:  IPC and cache miss rates for Itanium2, varying width and depth with 

equations = 181,202 

 

 

 Figures 3.6 and 3.7 are used to validate the results shown in Figure 3.3 (Alpha 

configuration) showing performance trends among problems of different shapes.  Figure 

3.6 displays the performance of the sim-alpha simulator configured to mimic the 

Itanium2 processor.  Figure 3.7 presents the actual results from the “cube” benchmark 

executed on the Itanium2 processor.  Both Figures 3.6 and 3.7 show the same trends as 

the Alpha configuration results shown in Figure 3.3.  The problems with the greatest 

width, smallest depth achieve the best performance in terms of IPC, but overall again the 

performance variation among problems of different shapes is less than 0.6 instructions 

per cycle.      

 In addition, the results of an Itanium2 problem size study varying the degrees of 

freedom provides the evidence leading to our decision to concentrate on a problem size 

with Dof=1, shown in Figures 3.8 and 3.9.  This study is performed on the Itanium2 

processor because problems can be evaluated on the Itanium2 in a fraction of the time it 

takes to simulate the same problem on the sim-alpha simulator.  Using the Itanium2 

processor, many problem sizes, shapes and varying degrees of freedom can be simulated 

in a matter of days, instead of weeks with a simulator.  Also, the similarity in results 
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collected from the Itanium2 processor and the sim-alpha simulator provides validation of 

these results and confidence in using data from each method.  Figures 3.8 and 3.9 below 

indicate some variation in performance caused by changing the degrees of freedom of the 

“cube” benchmark, but the y-axis scales reveal that this variation is very small.  

Therefore, our subsequent studies will be performed on problem with one degree of 

freedom. 

 
Degrees of Freedom 

 

Figure 3.8:  Itanium2 IPC and cache miss rates of CRS matrix W=40, D=40 with varying 

degrees of freedom 
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Degrees of Freedom 

 

Figure 3.9:  Itanium2 IPC and cache miss rates of CRS matrix W=300, D=1 with varying 

degrees of freedom 

 

 

3.3 Performance and Bottleneck Analysis 

 

The next step in analyzing the performance of the “cube” test problem is to identify 

the bottlenecks preventing maximum performance of the workload.  A good place to start 

the investigation of these potential bottlenecks is to observe the behavior of each major 

structure and queue simulated under default conditions in sim-alpha.  The table below 

shows the average performance and utilization of each major structure and queue in the 

sim-alpha architecture calculated for two different problem sizes (number of equations) 

each with 5 variations of W, D and DofPerNode (10 total simulations).    
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Architectural Structure 
Average 
Statistics  Statistic Definition 

L1 Data Cache 0.07079 Miss Rate  

L2 Cache 0.47072 Miss Rate  
Data Translation Look-aside Buffer 
(TLB) 0.00013 Miss Rate  

Branch Predictor 0.01073 Miss Predict Rate  

Integer Issue Queue 10.12167 Average Number of Instructions in Queue 

Floating-point Issue Queue 1.32417 Average Number of Instructions in Queue 

Load Queue 4.81939 Average Number of Instructions in Queue 

Store Queue 1.93474 Average Number of Instructions in Queue 

Function Unit Utilization 0.36786 Percent Utilization of Functional Units 

Instructions Per Cycle 1.16264 Instructions Completed Per Cycle 

Table 3.2: Average performance statistics for sim-alpha simulations 

 

 

 As shown in Table 3.2, the average IPC is far below the maximum IPC of 4, the 

theoretical maximum for this superscalar architecture with a 4 instruction fetch width. 

Table 3.2 also indicates 4 areas of potential architectural bottlenecks - the DL1 cache, the 

L2 cache, the Integer Issue queue, and high instruction-level dependencies (indicated by 

low functional unit utilization).  Due to the high disparity between cache and memory 

latencies, the impact of a 47 percent L2 cache miss rate can greatly affect the overall 

performance.  Even a 7 percent DL1 cache miss rate can impact performance because a 

miss to DL1 must incur the DL1 miss penalty plus the L2 hit time, assuming the cache 

block resides in the L2 cache.  Therefore, both the DL1 and L2 caches are both potential 

bottlenecks.  The DTLB and branch predictor rates both indicate about 99 percent 

accuracy or better and show no indications of hindering performance.  The Integer Issue 

Queue is the only queue with average entries above half of the total capacity.  While an 

average of half capacity is not alarming, since the IIQ is the most frequented of all the 

queues, it is also considered a potential bottleneck.  Finally, the function unit utilization 

proves that the functional units themselves are not limiting performance, but the low 
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utilization suggests a potential instruction-level bottleneck.  Programs that are bound by 

dependencies (i.e. programs containing a high percentage of instructions that depend on 

previous instructions to complete) often exhibit low functional unit utilization because 

waiting instructions can not be issued to the functional unit until the dependencies have 

been resolved.  Therefore, the low performance of the “cube” benchmark may be caused 

by these instruction-level dependencies. 

 

3.1.1   Investigating the Cache Bottleneck 

 

Because so much research has been devoted to improving the cache performance 

in microprocessor, the potential cache bottleneck was the natural place to begin our 

bottleneck research.  As described in the previous chapter, there are many proposed 

techniques for improving cache performance among scientific workloads represented by 

the cube benchmark.  However, before implementing and testing the effectiveness of 

such methods, it is important to assess the actual impact of caching on the overall 

performance of the cube test problem.  The maximum performance of the benchmark 

without cache delays is simulated by replacing the caches with a perfect cache model.  In 

sim-alpha, the configuration file provides the option of choosing a perfect L2 cache.  

While sim-alpha does not simulate a truly perfect L1 data cache, nearly perfect cache 

performance (miss rates less than 1 percent of accesses) is achieved by making the DL1 

over 64MB.  The gain in IPC without cache interference is shown in Figure 3.11 below: 
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Figure 3.10:  Sim-alpha IPC for Problem Size 55x55x1 with default  

Alpha cache configuration 
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Figure 3.11:  Sim-alpha IPC for Problem Size 55x55x1 with 65M DL1,  

infinite L2 cache configuration 
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 Figures 3.10 and 3.11 demonstrate the overall performance improvement 

achieved by simulating nearly perfect cache behavior for the entire cache hierarchy.  This 

‘close to perfect’ cache behavior is characterized by incurring no L2 cache misses and 

only a 0.66 percent DL1 miss rate. The average IPC rate of the processor simulated with 

“infinite” cache only increases by 0.2885 instructions per cycle from the default cache 

configuration.  The average IPC of the default configuration is 1.1548 instructions per 

cycle compared to 1.4433 instructions per cycle for the perfect cache configuration.  The 

small performance gain accomplished by eliminating almost all cache misses suggests 

that cache behavior is not the most significant bottleneck existing for the “cube” 

benchmark.  This conclusion is surprising due to the extensive research devoted to 

improving cache behavior for scientific workloads.  Also, the implications of this result 

help shift our efforts and priorities of performance analysis from caching to other areas of 

potential bottlenecks. 

 The following Figures 3.12 and 3.13 display the performance in IPC of the 

SPEC00 benchmark fma3d for the default Alpha configuration and a simulated perfect 

cache.  The fma3d benchmark displays similar performance behavior to the “cube” 

benchmark.  The performance of both FEA benchmarks improves only slightly with 

“perfect” cache performance.  The fma3d performance increases from 1.561 instructions 

per cycle to 1.8446 instructions per cycle no cache misses.  While the overall 

performance of fma3d is minimally better than the “cube” benchmark, the 0.2836 IPC 

increase from the perfect cache configuration on the fma3d benchmark almost exactly 

matches the IPC increase from the same configuration on the “cube” benchmark. 
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Figure 3.12: Sim-alpha IPC for SPEC00 fma3d with default Alpha cache configuration 

 
 

Figure 3.13:  Sim-alpha IPC for SPEC00 fma3d with perfect cache configuration 
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3.1.2    The Integer Issue Queue and Other Architectural Bottlenecks 

 

 Similarly, to estimate the effects of the finite Integer Issue Queue, simulations are 

performed with the IIQ queue increased from 20-entries to 40-entries.  However, this 

change in configuration shows no improvement on overall performance or no change in 

the average queue occupancy for both the “cube” and fma3d benchmarks.  Finally, a 

‘super’ architecture is simulated on sim-alpha and sim-outorder to estimate the maximum 

possible IPC of the “cube” benchmark, shown in Figure 3.3 below.  This “super” 

configuration aims to eliminate the effects of architectural bottlenecks by providing more 

resources than need by the application.  Although the “super” configurations are 

unrealistic compared to even the largest microprocessors currently available, the 

simulations help gauge the upper bound on performance achievable for a particular 

program.  The following table describes the “super” configurations for sim-alpha and 

sim-outorder. 
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Configuration Sim-outorder Sim-alpha 

Fetch Queue Size 32 8 

Fetch Speed 1 1 

Branch Prediction Config 2 level Alpha 

Branch Prediction Size 32 KB 32 KB 

Decode Width 32 12 

Issue Width 32 12 

Commit Width 32 22 

Reorder Buffer Size 256 160 

Load/Store Queue Size 32 64 

L1 Data Cache 512 KB 64 MB 

L2 Data Cache 4 M Perfect 

L1 Instruction Cache 256 KB 64 MB 

Instruction TLB 512 KB 8 KB 

Data TLB 1 M 8 KB 

Int ALU's 16 4 

Int Mult/Div 8 4 

Memory ports 4 2 

Floating Point ALU's 16 2 

Floating Point Mult/Div 8 2 
Table 3.3:  “Super” configuration for sim-alpha and sim-outorder 

  

“Super” configurations are implemented in both sim-alpha and sim-outorder to 

demonstrate two estimates of peak performance.  Because sim-alpha simulates a more 

complicated, realistic architecture, there are limits to its super configuration.  For 

example, sim-alpha executes the clustering of instructions issued to the function units as 

performed in the ALPHA 21264.  This clustering schedules the issuing of instructions to 

specific functions units in order to minimize producer/consumer delays.  Adding 

functions units to the sim-alpha simulator would require a major modification of this 

clustering technique.  The sim-alpha configuration described in Table 3.2 is the best 

configuration executable on our version of the sim-alpha simulator.  Table 3.2 also shows 

that sim-outorder allows more freedom in modifying resources due to its simple 

architecture.  A configuration similar to our sim-outorder “super” configuration has been 
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used in the research of other benchmarks achieving IPC values up to 10, 000 instruction 

per cycle for the SPEC95 ijpeg benchmark [25].   

 

Configuration IPC 

sim-alpha   

Base 1.1548 

Super 1.609 

sim-outorder   

Base 1.54 

Super 2.08 

Super with bigger branch predictor 3.09 
Super with even bigger branch predictor 
no cache misses 
No TBL misses 4.05 
Super with even bigger branch predictor 
no cache misses 
no TBL misses 
double integer and floating point functional units 4.4 
Super with even bigger branch predictor 
no cache misses 
no TBL misses 
double integer and floating point functional units 
32 memory ports 4.73 
Super with even bigger branch predictor 
no cache misses 
no TBL misses 
quadruple integer and double floating point functional units 
32 memory ports 
1 cycle functional unit latencies 4.98 

Table 3.4: IPC achieved with sim-alpha and sim-outorder ‘super’ configurations for CRS 

matrix W=55, D=55, Dof=1 

 

 

 The sim-alpha “super” configuration showed modest performance gains due to 

limited configuration flexibility.  The best sim-outorder configuration achieves an IPC 

rate of almost 5 instructions per cycle.  The over 2x speedup of this configuration with 

almost no architectural constraints estimates the maximum performance achieved by 

eliminating the bottlenecks.  The SPEC00 benchmark executing finite-element analysis, 
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fma3d, also achieves limited improvement with the “super” configuration, improving 

only 1.8 instructions per cycle from its base IPC of 1.561.   

The “super” configuration does enable both the “cube” benchmark and fma3d to 

achieve better overall performance, but performance is still far below ideal.  After 

quantifying the effects of potential architectural bottlenecks, it is important to understand 

the bottlenecks within the benchmark itself.  As noted before in Table 3.2, the functional 

units appear to be under-utilized indicating a possible instruction-level dependency 

bottleneck.  Quantifying the effect of this instruction-level bottleneck is an essential part 

in understanding the performance of the “cube” benchmark. 

 

3.1.3    Instruction-level Dependency Bottleneck 

 

 The degree of instruction-level dependency existing in the cube benchmark is 

calculated by measuring the number of cycles each instruction spends waiting on a 

previous instruction to complete.  Out-of-order execution, used in sim-alpha, sim-

outorder, and the Itanium2 processor, allows instructions to be executed by the functional 

units out of program order.  This type of execution works to eliminate wasted cycles by 

keeping the functional units busy and executing independent instructions (instructions 

that don’t depend of the execution of previous instructions) during idle cycles.  However, 

to preserve correct program execution, instructions must be committed (saved) in 

program order.  Therefore, in programs with high levels of instruction-level dependency, 

instructions may spend several cycles in the reorder buffer waiting for a previous 

instruction commit.   



 55 

 During simulation, tracking the number of cycles each instruction spends waiting 

to be issued to the functional units and to commit in the reorder buffer quantifies the 

existence of instruction-level dependency during each phase of the cube benchmark, 

shown in Figure 3.14.  The cycles are also grouped by instruction-type to identify which 

type of instructions spend the most time waiting at the top of the reorder buffer to 

commit.  These instruction types are responsible for holding up subsequent instructions 

and are the main cause of this instruction-level bottleneck.  Figure 3.15 displays those 

instructions causing the most waiting time in the reorder buffer. 

Instruction-level Dependency Stalls for CRS Matrix (W=55, D=55, Dof=1)
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Figure 3.14:  Average number of cycles each instruction waits to issue and commit for 

sim-alpha 

 

 The graph above shows the overall average wait for each instruction to issue to 

the functional units and to commit from the reorder buffer is approximately 5.58 cycles.  

The average graph peaks during an initial and also jumps up and continues to increase 

during the solve phase starting around 10 billion instructions.  The average wait for each 
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instruction to issue to the functional units is approximately 1.78 cycles.  The average wait 

for each instruction in the reorder buffer is 3.8 cycles.  Because of the low functional unit 

utilization, the average wait to issue can be attributed to instruction-level dependencies.  

Only instructions with all operands available can issue to the functional units.  Therefore, 

if an instruction is depending on the previous instruction for an operand, the instruction 

will wait to be issued until the previous instruction has produced the needed operand.  

This is another example of an instruction-level dependency stall.  

Instruction Mix - CRS Matrix 55x55x1
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Figure 3.15: Number of each instruction type executed in the “cube” benchmark  

(Instruction Mix)  
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Percentage of Stall Cycles Caused by Each Instruction Type (CRS Matrix 55x55x1)
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Figure 3.16: Reorder buffer stalls caused by instruction type in sim-alpha (55x55x1) 

 

 Figure 3.15 categorizes the number of each instruction that is executed by the 

“cube” benchmark.  The major of the instructions executed fall into the load or other 

category.  However, Figure 3.16 indicates that the most of the stalling in reorder buffer is 

caused by floating point instructions and load instructions.  These results are consistent 

with the operations performed in the main kernel of the solve phase performed by the 

cube benchmark.  This kernel, found in the Trillinos Aztec solver library (azgmres.c), 

performs spare matrix multiplication.  Consider the simple sparse matrix multiplication, y 

= A * x.  This operation requires the loading of each value of the matrix A (the cube 

mesh in the cube benchmark) and the vector x (values are reused).  Then, each element of 

A is multiplied the appropriate x value and saved in the vector y.  Each matrix multiply is 

a floating point operation which account for most of the stall cycles in the reorder buffer.   
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Intruction Mix - fma3d
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Figure 3.17: Number of each instruction type executed in the fma3d benchmark  

(Instruction Mix) 
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Figure 3.18: Fma3d reorder buffer stalls caused by instruction type 
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Figure 3.17, categorizing the instructions causing stall cycles in the SPEC00 benchmark 

fma3d, shows results very similar to the “cube” benchmark.  Floating point and load 

instruction still cause the major of the stall in the reorder buffer, but in the fma3d 

benchmark the loads account for more stall than the floating point instructions (Figure 

3.18).  These results identifying floating point and load instructions as the major 

contributors to instruction-level stalls for the “cube” and fma3d benchmarks are verified 

by statistics gathered by the Itanium2 performance counters.   

Figure 3.19 presents the instruction mix for the “cube” benchmark collected by 

the Itanium2 processor.  The instruction mix in similar to the “cube” instruction mix from 

sim-alpha, however the more floating point operations are performed by the sim-alpha 

simulator and more branches are executed by the Itanium2 processor.  These differences 

occur due to the differences the hardware, compilers and instruction set architectures 

(ISA).  The ISA describes the aspects of the computer architecture visible to a 

programmer, including the instruction and data types, addressing modes, memory 

architecture, exception handling and others.  Figure 3.20 identifies the major contributors 

to stalling in the Itanium2 processor.  And even with the differences in the two processor 

types and ISAs, the figure confirms that loads and floating point operations are still the 

major operations causing stall in the execution of the “cube” benchmark.  
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Figure 3.19: Number of each instruction type executed in the “cube” benchmark on the 

Itanium2 processor for 3 equal equation problems (Instruction Mix) 
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Figure 3.20: “Cube” benchmark dependency stalls collect from Itanium2 processor for 3 

equal equation problems 
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3.1.4    Reducing Instruction-level Dependency  

 

Instruction-level dependency chains cause delays in the execution and processing 

of instructions and therefore stifling performance.  Many times, this instruction-level 

dependency arises in scientific computing due to the tight loop computation method used 

to solve scientific problems.  Recurrences are computations or microprocessor 

instructions whose value for one iteration depends directly previous iterations.  For 

example, the equation 

sum = sum + x 

demonstrates recurrence.  Loop unrolling is a technique used to overcome the 

dependency chains caused by recurrences and other dependencies.  Loop unrolling 

consists of unrolling (moving outside the loop) several iterations of a loop to make 

available more independent instructions.  Consider the loop unrolling technique as 

applied to the inner loop of matrix multiplication used in each of the solvers available in 

the “cube” benchmark. 

for(i = 0; i <NumMyRows_; i++) { 

      for(j = 0; j < NumEntries; j++) 

      sum += RowValues[j] * xp[RowIndices[j]]; 

} 

yp[i] = sum; 

 

In this loop, NumMyRows equals the number of rows in the cube.  NumEntries is the 

number of nonzero entries per row of the cube.  And, the core multiplication involves an 

element from the cube (RowValues[j]) and the corresponding element from the 

multiplication vector (xp[RowIndices[j]]).  The following example shows the technique 

of loop unrolling applied to the inner matrix multiplication loop of the “cube” 

benchmark. 
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 Core Loop    Example Latencies of Operations 

 load RowValues[j]   Instructions Clock cycles 

 load RowIndices[j]   FP op to FP op 3 

 mult RV[j] RI[j]   FP op to Store op 2 

 add sum (RV[j] + RI[j])  Load op to FP op 1 

      Load op to Store op 0 

          

 Normal execution    Loop Unrolling Technique  

 (4 loop iterations with stalls)    (4 loop iterations with stalls) 

1 load RV[j]   1 load RV[j]   

2 load RI[j]   2 load RI[j]   

3 stall    3 load RV[j+1]   

4 mult RV[j] RI[j]  4 load RI[j+1]   

5 stall    5 load RV[j+2]   

6 stall    6 load RI[j+2]   

7 add sum (RV[j] + RI[j]) 7 load RV[j+3]   

8 load RV[j+1]   8 load RI[j+3]   

9 load RI[j+1]   9 mult RV[j] RI[j]  

10 stall    10 mult RV[j+1] RI[j+1]  

11 mult RV[j+1] RI[j+1]  11 mult RV[j+2] RI[j+2]  

12 stall    12 mult RV[j+3] RI[j+3]  

13 stall    13 add sum (RV[j] + RI[j]) 

14 add sum (RV[j+1] + RI[j+1]) 14 add sum (RV[j+1] + RI[j+1]) 

15 load RV[j+2]   15 add sum (RV[j+2] + RI[j+2]) 

16 load RI[j+2]   16 add sum (RV[j+3] + RI[j+3]) 

17 stall         

18 mult RV[j+2] RI[j+2]       

19 stall         

20 stall         

21 add sum (RV[j+2] + RI[j+2])      

22 load RV[j+3]        

23 load RI[j+3]        

24 stall         

25 mult RV[j+3] RI[j+3]       

26 stall         

27 stall         

28 add sum (RV[j+3] + RI[j+3])      

Figure 3.21: Loop unrolling technique applied to “cube” inner loop 
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Figure 3.21 demonstrates how the loop unrolling technique in this case reduces the 

execution by 12 cycles.  Compilers play a major role in decreasing dependency chains 

through scheduling and loop unrolling.  Generic compilers perform some loop 

optimizations, but workload-specific loop optimizations could help to eliminate stalling 

causing by instruction-level dependencies.  Workload-specific optimizations would allow 

the compiler to perform the exact amount of loop unrolling need to best improve the 

performance of that particular workload. 

 Another compiler technique used to reduce stalls caused by instruction-

level dependencies is called software pipelining or symbolic loop unrolling.  Software 

pipelining overcomes dependencies by including instructions from different iterations in 

the main loop, making them independent of other instructions in the loop.  Figure 3.22 

below shows the software pipeline technique applied to the inner loop matrix 

multiplication of the “cube” benchmark.  The software pipelining technique includes a 

section of startup code that must be executed before the pipelined inner loop and a 

section of cleanup code to be complete after the inner loop.  The inner loop includes four 

independent instructions that can be executed simultaneously with any dependency stalls. 

In this case, the software pipelining technique reduces the execution cycles from 

the 63 cycles of the original loop to the 36 cycles of the software pipelined loop, 1.7 

times faster.  This technique of software pipelining is already performed in some 

compiler optimizations, however our executables were not compiled with an optimization 

including this technique.  Future work will include recompiling with a compiler 

optimization employing software pipelining and simulating the performance 

enhancement resulting.  Also, we plan to use these compiler optimizations in conjunction 

with cache enhancement techniques in an attempt to maximize performance. 
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Core Loop      Example Latencies of Operations 

load1 RowValues[j]   Instructions Clock cycles 

load2 RowIndices[j]   FP op to FP op 3 

mult RV[j] RI[j]   FP op to Store op 2 

add sum (RV[j] + RI[j])  Load op to FP op 1 

     Load op to Store op 0 

         
         
Software Pipelining 
(9iterations)       

startup code:        

 load RowValues[j]      

 load RowIndices[j]      

 load RowValues[j+1]      

 mult RV[j] RI[j]      

 load RowIndices[j+1]      

 load RowValues[j+2]      

inner loop:        

 
for(i=0; i<NumMyRows_, 
i++)      

  for(j=0; j<NumEntries, j++)     

   load RV[j+3]     

   load RI[j+2]     

   add sum (RV[j]+RI[j])   

   mult RV[j+1] RI[j+1]    

cleanup code:        

 load RI[j+8]       

 mult RV[j+7] RI[j+7]      

 mult RV[j+8] RI[j+8]      

 add sum (RV[j+6]+RI[j+6])     

 add sum (RV[j+7]+RI[j+7])     

 add sum (RV[j+8]+RI[j+8])     

 

j j+1 j+2 j+3 j+4 j+5 j+6 j+7 j+8 

load1 load1 load1 load1 load1 load1 load1 load1 load1 

load2 load2 load2 load2 load2 load2 load2 load2 load2 

mult mult mult mult mult mult mult mult mult 

add add add add add add add add add 
 

Figure 3.22: Software pipelining technique applied to the “cube” inner loop   
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3.4 Performance Results and Conclusions 

 

The results from our analysis of the “cube” benchmark and the potential bottlenecks 

hindering its performance proved successful in eliminating the caches and other 

architectural structures as the major bottlenecks to the “cube” performance.  However, 

the instruction-level dependency existing in the “cube” benchmark does prevail as the 

most significant bottleneck to the microprocessor performance of this scientific 

workload.  In future work, instruction-level modifications or compiler optimizations such 

as workload-specific loop unrolling techniques are potential solutions to overcoming this 

instruction-level dependency bottleneck.   

Moreover, the cache behavior in terms of miss rates was not considered a major 

bottleneck to performance, however determining the best performing cache configuration 

for the “cube” benchmark and other similar scientific workloads is an important 

consideration for microprocessor designers.  The perfect cache simulated in this chapter 

is not a viable option for microprocessor design; therefore the next chapter will explore 

the best cache configuration for workloads represent by the “cube” test problem. 
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4 IMPROVING CACHE PERFORMANCE 

 

 

Although the results from the previous chapter indicated that cache behavior was 

not the most significant performance bottleneck plaguing the finite element analysis of 

sparse matrices, choosing the best cache configuration for these scientific computations 

remains an important design decision.  Previous simulations demonstrated the maximum 

performance achievable with a simulated ‘infinite’ cache.  And because “infinite” cache 

does not exist, comparing the performance of realistic cache configurations and their 

effect on overall performance must be determined.   

Most cache performance studies pertain to general purpose programs; however 

two studies described in the following paragraphs investigate cache performance of 

sparse matrix computations with an emphasis on 3-D finite element analysis.  In [26], 

cache performance in terms of cache hit rates are examined for the parameters of cache 

size, associativity, block size, write policy, one-cycle write operation, and the number of 

read and write ports.  Caches sizes are varied from 512 B to 128 KB.  The associativity is 

varied from direct-mapped to 4-way set-associative, and block sizes range from 8 to 128 

bytes.  Simulations of the sparse matrix multiplication performed with iterative linear 

solvers, on preconditioned matrices stored according to a compact storage format, are 

evaluated on the Thor simulator.  Thor is an event-driven functional simulator developed 

at Stanford and based on the CSIM simulator out of the University of Colorado at 

Boulder.  The simulation results are based on the average hit rates for 8 input mesh sizes, 

including 2 real finite element problems acquired from Lockheed Palo Alto Research 

Laboratory.  The summary of these simulations suggest the following cache configuration 

for sparse matrix computations as shown in Table 4.1: 

 



 67 

Organization Direct-mapped 

Size  1-8 KB 

Write Policy 
Write-back,        

1 cycle 

Block Size 128 B 

Read Ports 1 

Write Ports 1 
 

Table 4.1:  Recommended Cache Configuration for Sparse Matrix Computations [26] 

 

  

Another study of the effects of sparse matrix multiplication on caches by [27] 

analytically examines the cache access behavior of these workloads.  The analysis 

assumes multiplication is performed on the sparse matrix (M) arranged in storage-by-row 

format, its description index vectors (I and D), the multiplication vector (X), and the 

resulting vector (Y).  The vector I stores the non-zero column positions and D stores the 

non-zero row positions. 

 

Sparse Matrix Multiplication Format: Y = M * X 

 

This research focuses primarily on the cache access behavior of the matrix M and vectors 

I and X because vectors Y and D exhibit high spatial and temporal locality and account 

for a small percentage of cache misses.  The column vector, I, is accessed many more 

times than the row vector, D, because matrix multiplication is performed by row.  Row 

multiplication requires only one access to the row vector, D, and many accesses to the 

column vector, I.  Matrix M and vector I demonstrate no temporal locality because each 

element is only accessed one time.  Because of their size compared to the other vectors, 

both M and I may cause cache pollution hindering the exploitation of the locality found 

in the other vectors.  Vector X shows the most potential for the exploitation of additional 
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temporal locality depending on the size of the vector, the impact of interference from the 

matrix M, and the parameters of the cache configuration.     

 Detailed analytical equations and simulations help quantify the effects of cache 

parameters and organization on the performance of caches during the computation of 

sparse matrix multiplication.  These analytic calculations prove that when the bandwidth 

of matrix M is smaller than the cache size, the cache hit rate improves due to greater 

exploitation of temporal and spatial localities.  The matrix bandwidth, WB, is defined as 

the width in columns of the non-zero diagonal terms of the sparse matrix, M.   

 

Figure 4.1: Bandwidth, WB, of sparse matrix M from [27] 

 

Also, increasing the line (block) size of the cache improves the overall cache hit rate for 

line sizes up to 64 bytes (maximum size for this study).  However, the vector X shows a 

maximum hit rate at a line size of 8 bytes and then decreases along the parabolic curve 

for larger line sizes.  The matrices with higher densities (less average distance between 

non-zero elements) show greater hit rates for each cache configuration considered 

benefiting from the temporal and spatial localities of X.   
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                 Block size in powers of 2 (Bytes) 

  

Figure 4.2: Cache hit ratio for cache configurations with block sizes from 0 to 64B taken 

from [27] 

 

Finally, this research suggests that the blocking-by-diagonal formatting technique (rather 

than storage-by-row) provides better reuse of the vector X and a better parallelization 

platform for multi-processor computing.  Blocking-by-diagonal involves splitting the 

original banded sparse matrix on the diagonal resulting in smaller submatrices each with 

smaller bandwidths.  The smaller bandwidths of these submatrices decrease the burden 

on each local cache and improve local cache hit rates.   

  

4.1    Cache Configuration Effects on Performance  

 

 In order to compare the cache behavior of the cube3 benchmark to the sparse 

matrix computation results summarized above, the DL1 and L2 cache miss rates for 

various cache configurations are presented.  The miss rates for this study are collected 

from a CRS, pre-conditioned mesh with dimensions of width 55, height 55 and depth 55 

and one degree of freedom per node.  With this constant problem size, the DL1 and L2 

cache sizes, associativities, and block sizes are varied.   
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Varying Cache Block (CRS matrix W=55, D=55, Dof=1)
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Figure 4.3: Cache miss rates and IPC rates for caches with varying cache block size 

 

 Figure 4.3 shows the cache miss rates and the IPC rates for the default sim-alpha 

cache sizes with varying block sizes.  The block size, 128B, appears to be the best 

performing block size configuration as indicated by the highest IPC rate and the lowest 

L2 cache miss rate.  The DL1 cache miss rate for 128B block size is slightly higher than 

the other block sizes, but not significantly.  The 64B block size may be more appropriate 

for the smaller DL1 cache, but overall the best performance is achieved by the 

configuration with 128B block size. 
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Varying Associativity (CRS matrix W=55,D=55, Dof=1)
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Figure 4.4: Cache miss rates and IPC rates for caches with varying associativity 

Varying Cache Size (CRS matrix W=55, D=55, Dof=1)
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Figure 4.5: Cache miss rates and IPC rates for varying cache sizes 
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 Associativity seems to have little impact on performance in terms of IPC as 

demonstrated in Figure 4.4, but the L2 cache incurs the least misses with the direct-

mapped configuration and the DL1 with a 4-way set-associative cache.  A 2-way set-

associative DL1 and direct mapped L2 cache are the cache configurations used in the 

Alpha 21264 microprocessor.  The DL1 cache size of 256KB and L2 cache size of 8MB 

together demonstrate the best performance in terms of IPC and the DL1 miss rate of all 

the four cache sizes simulated, according to Figure 4.5.  The results of the cache 

configuration performance study are summarized in Table 4.2, with the best rate for each 

structure bolded and the best overall configuration option highlighted. 

 

Cache DL1 L2  IPC 

Block Size 

half blk, 32B 0.0619 0.6481 1.0765 

reg, 64B 0.0382 0.6034 1.1548 

double blk, 128B 0.0731 0.4972 1.2054 

perfect cache 0.0066 0 1.4433 

Associativity 

direct mapped 0.0554 0.519 1.1421 

2-way 0.0382 0.614 1.1502 

4-way 0.0378 0.622 1.1521 

8-way 0.0373 0.6926 1.1274 

Cache Size 

32K, 1M 0.0599 0.5531 1.1249 

65K, 2M 0.0382 0.6034 1.1548 

128K, 4M 0.0334 0.6705 1.1547 

256K, 8M 0.032 0.6492 1.1728 

 

Table 4.2: Simulated cache miss rates and IPC rates for various cache configurations 

      

 

 

 



 73 

4.2     Cache Bypassing 

 

  Another method of cache optimization described in Chapter 2 involves 

strategically excluding large matrices and arrays (that are only accessed one time during 

the solve phase of finite-element analysis and sparse matrix multiplication) from the 

cache.  All instructions involving these array elements would operate directly to and from 

main memory.  This bypassing of the cache prevents cache pollution caused by the 

elements of large arrays that are never reused in the execution of the program.  Some 

methods described in Chapter 2 dynamically determine which memory accesses to cache 

or not, and others create a separate cache exclusively for these array elements.   

 To quantify the effectiveness of this bypassing cache optimization, the memory 

addresses of the matrix describing the problem of the cube3 benchmark are statically 

marked for exclusion from both levels of cache.  To determine the exact memory location 

of the matrix in cube3 test problem, an address print statement is placed after the storage 

optimization, just before the solve phase in the Epetra_CrsMatrix.cpp file of the Trilinos 

solver package.   

double * tmp = All_Values_; 
  for (i=0; i<NumMyRows_; i++) { 

          int NumEntries = NumEntriesPerRow_[i]; 
          for (j=0; j<NumEntries; j++)//{ 
       tmp[j] = Values_[i][j]; 

           /* INSERTED PRINT STATEMENT */ 
               printf("%p\n",&Values_[i][j]); 

} 
           if (Values_[i] !=0) 
               delete [] Values_[i]; 
           Values_[i] = tmp; 
           tmp += NumEntries; 
            
  } 
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These addresses are hard-coded into the simulator at the point of the cache access, in files 

writeback.c and commit.c of sim-alpha.  When one of these addresses is requested by an 

instruction, the bypass tells the simulator to go directly to memory for the data and 

prevents the data from being stored in the cache.  The bypass counter tracks the number 

of memory accesses bypassed by the caches.  The final counter result should equal the 

number of matrix elements bypassed times the number of iterations of the solver because 

we are bypassing the matrix elements that are only accessed one time per iteration. 
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Figures 4.6: Cache bypassing performance results measured by IPC 

 

 Figure 4.6 shows the effect of the cache bypassing on IPC for a small 8x8x3 

“cube” problem.  The first line plots the IPC of the original 8x8x3 problem with no cache 

bypassing.  The next line shows the effect of the bypassing with an unrealistically low 

memory latency of one cycle.  This low memory latency is plotted to show the effects of 
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the bypassing.  The figure shows that the bypassing does affect the performance in terms 

of IPC, in this case positively because each access to the bypassed addresses costs only 

one cycle (instead of the 12 cycles actually needed to access memory).  The third line 

implements the actual memory latency of 12 cycles, and the graph indicates the decrease 

in IPC caused by this change.  While this line represents the most realistic 

implementation of the cache bypassing technique, other factors may be causing IPC to 

decrease in this case.   

First, the problem size is relatively small and the matrix we are bypassing is 

actually a manageable size to the Alpha cache configuration.  Therefore, the execution 

with no bypassing benefits from cache matrix element from one iteration to the next.  

However, when scaled to bigger problems, the matrix elements would be forced to reside 

in memory with or without cache bypassing, and the bypassing would not decrease 

performance, but only allow for the reuse of other, smallest elements in the cache.  Also, 

in this initial test of the cache bypassing technique, the addresses are excluded from the 

cache in the entire execution of the “cube” benchmark.  However, a more accurate 

implementation would only exclude the addresses during the solve phase of execution 

because initial matrix formation and conditioning may benefit from caching.  Also, we 

obtained the addresses from the “cube” benchmark after the initial phases, just before the 

solve phase, so to exclude the addresses before the solve phase may cause erroneous 

addresses to be excluded.  The second phase of the cache bypassing implementation that 

includes (a) scaling the method to larger problem sizes and (b) bypassing addresses only 

during the solve phase was postponed in light of the perfect cache results indicating that 

cache behavior was not the most significant performance bottleneck. 
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Furthermore, the approach of statically defining the memory addresses of the 

large matrix to exclude from the cache is a simple way to evaluate the effectiveness of 

this technique of cache optimization.  However, static definitions are not a practical 

implementation for a variety of workloads and processor platforms.  Future work on this 

technique includes adding attributes to the source code of the cube3 benchmark to 

dynamically signal which memory accesses should be placed in the cache and which 

should be stored strictly in main memory.  This dynamic implementation provides a more 

universal solution for optimizing finite-element and sparse matrix multiplication solvers.   
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5 CONCLUSION 

 

 

Designing the best performing microprocessor for a class of applications involves 

researching the impact of each major design decision and exploring innovative methods 

to best solve the application specific challenges.  The class of large scientific applications 

executed at Sandia National Laboratories present unique characteristics and challenges 

for microprocessor performance optimization.  This thesis investigates the 

microarchitectural bottlenecks limiting the performance of SNL’s large scientific 

applications and proposes configurations and techniques to improve performance. 

 The cache configuration has traditionally been considered one of the major 

bottlenecks to scientific workload performance, and therefore much research has been 

devoted to cache improvement techniques.  Our simulations of the “cube” test problem, 

(W=55, D=55, Dof=1) used to represent scientific applications used at SNL, suggest the 

following cache hierarchy for the best overall benchmark performance: 

• DL1 - 256KB, 2-way set-associative, 64B block size 

• L2 – 8MB, direct-mapped, 128B block size 

However, our simulations also indicate that cache behavior is not the main bottleneck 

limiting performance.   

A technique of cache bypassing that prevents matrix cache blocks and other one-

time use cache blocks from entering the cache hierarchy was simulated to determine the 

performance gains of reducing polluting the cache.  The cache bypassing technique 

implemented for this research did not improve performance as expected.  Because the 

cache hierarchy was not the most significant performance barrier, improvements to the 
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technique were not explored.  However, the cache bypass technique will be revisited in 

future work. 

After ruling out the cache as the major performance bottleneck, other micro-

architectural bottlenecks were explored. Using configurations for the SimpleScalar 

simulators, sim-alpha and sim-outorder, to simulate perfect cache behavior, we observed 

a performance increase of only 0.28 instructions per cycle over the IPC of the same 

problem with the default Alpha cache configuration.  Simulating a perfect cache serves to 

eliminate all stalling caused by cache misses.  Since removing all cache stalls does not 

significantly improve the overall performance of the benchmark, the cache configuration 

does not appear to be the main factor limiting performance.   

 A “super” microprocessor configuration with immense resources was simulated to 

remove all architectural restraints on microprocessor performance.  The 3.44 IPC 

achieved with the best configuration shows that additional microprocessor resources do 

help performance, but not as much as expected.  Since other types of benchmarks achieve 

IPC rates of hundreds, even tens of thousands of instructions per cycle with the “super” 

configuration, the performance reduction from instruction-level dependency stalling was 

next potential bottleneck explored.   

Our simulation of instruction-level dependency stalls in the “cube” benchmark for 

the default Alpha configuration reveals that on average an instruction waits 1.78 cycles to 

be issued to a functional unit and waits 3.8 cycles in the reorder buffer before being 

committed.  This average 5.58 cycle stall per instruction due to dependencies constitutes 

a significant performance bottleneck.  The average stall cycle increases to over 7 cycles 

per instruction for the “cube” benchmark simulated with the “super” architectural 

configuration.  Classifying each stall by instruction type indicates that most stalling 
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occurs from floating-point and load instructions.  The result seems reasonable since one 

of the main kernels in the “cube” benchmark to perform sparse matrix multiplication 

involves these instructions.  Workload-specific loop unrolling and other compiler 

techniques are possible solutions to reducing the stalling caused by instruction-level 

dependencies.  Our future work includes researching and implementing these techniques 

to reduce instruction-level dependencies and improve overall performance. 
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APPENDIX A 

 

1 CRS 55x55x1 – Interval IPC Graphs 
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CRS 55x55x1 - Interval IPC

Sim-alpha Itanium Configuration
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CRS 55x55x1 – Interval IPC 

(Itanium2 Processor) 
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2 CRS Degrees of Freedom = 1 
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3 CRS Degrees of Freedom = 3 
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4 VBR Degrees of Freedom = 1 
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